

Tetrahedron 58 (2002) 8219–8226

TETRAHEDRON

Trimethylsilyl bis(trifluoromethanesulfonyl)imide as a tolerant and environmentally benign Lewis acid catalyst of the Diels–Alder reaction

Benoit Mathieu^a and Léon Ghosez^{a,b,*}

^aDepartment of Chemistry, University of Louvain, 1 Place Louis Pasteur, B-1348 Louvain-la-Neuve, Belgium
^bEuropean Institute of Chemistry and Biology (IECR ENSCPR), 16 Ayenye Pay Berland, E-330607 Pessac, Fra ^bEuropean Institute of Chemistry and Biology (IECB-ENSCPB), 16 Avenue Pey-Berland, F-330607 Pessac, France

Received 2 May 2002; accepted 15 May 2002

Abstract—N-trimethylsilyl bis(trifluoromethanesulfonyl)imide (TMSNTf₂) was readily prepared in situ by protodesilylation of trimethylsilane, allyl- or phenyltrimethylsilane with bis(trifluoromethylsulfonyl)imide. NMR studies showed that TMSNTf₂ was much more effective than TMSOTf in complexing the carbonyl group of *trans*-methylcrotonate. As a result, TMSNTf₂ was found to be superior to TMSOTf as a catalyst for the Diels–Alder reaction of α , β -unsaturated esters with a wide variety of dienes. In contrast to many metal derived Lewis acids, TMSNTf₂ was found tolerant of many sensitive functional groups present in the diene partner. © 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Lewis acids are among the most useful catalysts of organic reactions.^{[1](#page-7-0)} They are often used to activate a carbonyl group of a reactant and consequently increase its electrophilicity. However, problems can be encountered when the reactants contain several functional groups which can act as Lewis bases. This can lead to the deactivation of the catalyst and, often, to undesired side reactions. We ran into this problem while studying Diels–Alder reactions of 1 and 2-azadienes which were found to decompose when exposed to several commonly used Lewis acids (Scheme 1).^{[2](#page-7-0)}

These studies also showed that trialkylsilyltriflates acted as efficient Lewis acid catalysts for the reaction of α , β -unsaturated amides with 2-azadienes (Scheme 2).^{[3](#page-7-0)}

Keywords: 2-azadienes; Diels–Alder reactions; amides.

Scheme 2.

No degradation of the sensitive 2-azadiene was observed under these conditions. However, trialkylsilyltriflates did not catalyze the reaction of methyl acrylate, a weaker Lewis base. A more powerful silylating agent was thus needed. 3

In recent years, the interest of many research group for genuine silyl cations^{[4](#page-7-0)} has stimulated the search for highly electrophilic silylating agents. Table 1 shows some very electrophilic silylating agents along with their 29Si chemical shift.

Table 1. 29 Si chemical shift of silylating agents

Entry	Silylating agent	δ^{29} Si	Reference
a	$Me3SiCB11F11$	120	
b	$Me3SiB(C6F5)4$	84.8	6
c	Me ₃ SiNTf ₂	55.9	
d	$Me3SiN(SO2F)2$	44.9	
ė	Me ₃ SiOTf	43.5	
f	Me ₃ SiClO ₄	43.4	10
g	Me ₃ SiCl	32.5	10

0040–4020/02/\$ - see front matter © 2002 Elsevier Science Ltd. All rights reserved. PII: S0040-4020(02)00971-7

 * Corresponding author. Fax: $+32-10-47-29-44$ $+32-10-47-29-44$ $+32-10-47-29-44$; $+33-5-57-96-22-22$; e-mail: ghosez@chim.ucl.ac.be

As a result of our previous experience with bis(trifluoromethylsulfonyl)imide salts which are stable and safe substitutes for the corresponding perchlorates, 11 11 11 we decided to study the corresponding silylated derivatives. The TMS derivative shows much lower 29Si chemical shift than the TMS–carboranes and tetra(pentafluoro-phenyl)borate (entries a and b) but it is cheaper and easier to prepare. In 1997, we reported our preliminary results on the use of TMSNTf₂ as an efficient catalyst for the cycloaddition of methylacrylate to various dienes and for representative ene reactions.^{[12](#page-7-0)} Shortly after, the group of Mikami^{[13](#page-7-0)} reported that TMSNTf₂ was an effective catalyst for the Friedel– Crafts alkylation reaction and the group of Robertson^{[14](#page-7-0)} reported the use of TMSNTf₂ for the β -allylation of enones. More recently, we have described the first chiral silicon Lewis acid which led to significant facial selectivity in a model reaction.^{[15](#page-7-0)} Also Yamamoto's group recently demonstrated the efficiency of $TMSNTf₂$ as a catalyst for Mukayama–Aldol and Sakurai–Hosomi allylation reaction.[16](#page-7-0) We now report the full detail of our study on the preparation, physical properties and catalytic efficiency of trimethylsilyl bis(trifluoromethansulfonyl)-imide.

2. Synthesis of TMSNTf₂

TMSNTf2 had been first prepared by Foropoulos and Desmarteau by protodesilylation of trimethylsilane with $HNTf₂$ (Scheme 3).^{[17](#page-7-0)} This method requires the use of a closed vessel to avoid the loss of the volatile trimethylsilane.

 $TMSNTf₂$ has also been prepared by metathesis of trimethylsilyl chloride with $AgN(SO_2CF_3)$ (Scheme 3).^{[7](#page-7-0)} This method required the use of an expensive and light sensitive reagent. Also it is not well adapted to an in situ preparation of $TMSNTf₂$ since it would involve a filtration under a strictly dry atmosphere. Scheme 3 shows the yields obtained by these methods after distillation of the crude products.

A more practical method involved the protodesilylation of allyltrimethylsilane. The reaction was fast at room temperature and yielded very pure $TMSNTf₂$ in essentially quantitative yields. It is particularly well suited for the in situ generation of TMSNTf₂. Phenyltrimethylsilane reacted equally well but vinyltrimethylsilane gave $TMSNTf₂$

contaminated by some impurities. A purification by distillation was needed.

No reaction was observed with TMSCl or tetrametylsilane which had been previously shown to undergo protodesilyla-tion in the presence of trifluoromethanesulfonic acid.^{[18](#page-7-0)} A protodesilylation reaction depends on both the strength of the acid which activates the substrate by protonation and the nucleophilicity of the conjugated base to displace the trimethylsilyl substituent.^{[19](#page-7-0)} As can be seen from Table 2, both pK_a and donor number should favor HOTf over HNTf₂.

3. Evaluation of the Lewis acidity of $TMSNTf₂$

To assess the Lewis acidity of TMSNT f_2 , we have selected the much used^{[22](#page-7-0)} though sometimes debated^{[23](#page-7-0)} method of Childs et al. It involves the measurement of the variation of chemical shift of the proton at position 3 of an α , β unsaturated carbonyl compound upon complexation with a Lewis acid.

A prerequisite for this study is the determination of the stoechiometry of the complex. We thus followed the change of the ${}^{1}H$ NMR spectrum of a solution of *trans*methylcrotonate in $CDCl₃$ upon successive addition of small amounts of TMSNT f_2 (Fig. 1). This spectrometric titration showed an homogeneous chemical shift variation of all the protons up to a saturation level slightly above 1 equiv. of TMSNTf₂. This meant that the complex has a 1:1 stoechiometry.

[Table 3](#page-2-0) shows that $TMSNTf_2$ is very effective in complexing various types of carbonyl groups. In contrast, TMSOTf did not give any variation of the chemical shift. It is thus clear that TMSNTf₂ behaved as a much stronger Lewis acid than TMSOTf ([Scheme 4](#page-2-0)). This was in line with the predictions based on the ²⁹Si chemical shifts of the two silylating agents. However it did not follow the order of Brönsted acidities which is $HOTf > HNTf₂$.^{[20](#page-7-0)} This was

Scheme 3. Figure 1. Spectrometric titration of *trans*-methylcrotonate with TMSNTf₂.

Table 3. Effect of Lewis and Brönsted acids on the chemical shifts of $H³$ protons of α , β -unsaturated carbonyl compounds

LA/HA	$\Delta \delta H^3$			
	Methylcrotonate	Crotonaldehyde	Cyclohexanone	
TMSNTf ₂	0.89	1.74	1.43	
TMSOTf	~ 0	~ 0	~ 0	
HNTf ₂	0.11	0.46	0.2	
HOTf	0.46	1.28	1.18	

Scheme 4.

further illustrated by the variation of chemical shifts of protons at the position 3 of trans-methylcrotonate, transcrotonaldehyde and cyclohexenone upon addition of 1.5 equiv. of HOTf or $HNTf₂$ (Table 3): the larger variations of chemical shift were observed with HOTf.

This surprising reversal of acidity sequence in going from the protic acid to the trimethylsilyl derivative could result from the size difference of the two anions. The bis(trifluoromethylsulfonyl)imide anion is much larger than the triflate anion. Therefore, the higher I-strain in TMSNTf₂ would thermodynamically favor the formation of the complex with a smaller ligand such as an ester group. This difference in I-strain does not exist in the protic acid.

Table 3 also showed that the chemical shift variations induced by $HNTf₂$ are one order of magnitude lower than those brought about by a similar amount of TMSNTf₂. This meant that a contamination of $TMSNTf₂$ by small amounts of HNTf₂ could only lead to a negligible underestimation of the Lewis acidity of TMSNTf₂.

Table 4. Diels–Alder reactions of α , β -unsaturated esters in toluene with 10 mol% silylating agent

4. Diels–Alder reactions catalyzed by TMSNTf₂

The difference in Lewis acidity between TMSNTf₂ and TMSOTf is dramatically illustrated by their effect on the rate of cycloaddition of dienes with α, β -unsaturated esters ([Table 4](#page-2-0)).

TMSOTf was unable to catalyze the Diels–Alder reactions of methyl acrylate or trans-methylcrotonate whereas TMSNTf₂ always acted as an excellent Lewis acid catalyst. Another important conclusion of [Table 4](#page-2-0) is that TMSNTf₂ did not cause the degradation of the reactants even when very sensitive dienes like 2-azadienes were used. The reaction of methylcrotonate with cyclopentadiene is quite illustrative of this quality of the catalyst. We had observed degradation reactions in the presence of $TMSNTf₂$. It was believed that it was not due to TMSNTf₂ itself, but rather to traces of $HNTf₂$ contaminating the catalyst. The reaction of cyclopentadiene with methylcrotonate being slower than that of methylacrylate, degradation of the reactants (probably cyclopentadiene) by the residual acid could become more significant. Addition of various bases (entries $e-g$) did indeed suppress the degradation of the reactants but also deactivated the catalyst: no reaction was observed. Control experiments by 1 H NMR showed that the base was silylated by $TMSNTf_2$ under these conditions. The use of a very hindered base was anticipated to suppress the reaction with $TMSNTf₂$ while still allowing for a proton abstraction from HNTf2. Rewardingly, it was found that, in the presence of 2,6-bis-tert-butyl-4-methylpyridine (BTBMP), no degradation occurred and the catalytic activity of $TMSNTf₂$ was restored (entry k). This observation led us to recommend the use of a small amount of BTBMP while running reactions in the presence of $TMSNTf₂$: this will suppress any reaction due to the presence of traces of $HNTf₂$ which are very difficult to avoid. A similar situation can be encountered with reactions catalyzed by TMSOTf: here also we recommend to add small amount of BTBMP to neutralize the residual HOTf.

We have also examined the stereochemistry of the catalyzed reaction (Scheme 5). The reaction of dimethylfumarate only

Scheme 5. Reaction conditions: 10 mol% TMSNTf₂, 10 mol% BTBMP, toluene, 0° C.

Scheme 6.

yielded trans adducts which were separated by preparative HPLC. The cycloaddition with dimethylmaleate gave three products, which were separated by HPLC. Control experiments showed that under the reaction conditions (1) no isomerization of dimethylmaleate to dimethylfumarate had occurred, (2) no isomerisation of the primary adducts was observed as shown in Scheme 6. The endo-cis adduct was silylated to give a mixture of enol ethers, which did not epimerize under the conditions used for the cycloaddition or upon treatment with HCl–EtOH.

The results described in Schemes 5 and 6 are of mechanistic significance. The formation of a mixture of *cis* and *trans*adducts from dimethylmaleate suggest a two step mechanism for the cycloaddition reaction (Scheme 7^{24} 7^{24} 7^{24}).

Reaction of the silylenol ether function of the diene on the activated form of dimethylmaleate would lead to an intermediate adduct which should undergo several conformationnal changes before undergoing the Mukaiyamatype cyclisation. These conformational changes of the intermediate adduct easily account for the formation of mixtures of cis and trans-adducts. However, conformational equilibrium has not been attained since we observed only trans-adducts from dimethylfumarate.

We believe that these results conclusively show that in situ generated $TMSNTf₂$ is an efficient Lewis acid catalyst for the Diels–Alder reaction of α , β -unsaturated esters with a wide variety of dienes, including some which have shown to

Scheme 7.

decompose in the presence of many conventional Lewis acids. They also show the superiority of TMSNT $f₂$ as a Lewis acid catalyst over TMSOTf. We are confident that this strong, non-metallic Lewis acid will find many applications as a tolerant and 'green' catalyst of reactions triggered by carbonyl groups.

5. Experimental

¹H NMR spectra were recorded in CDCl₃ on Varian Gemini-200, 300 or on Bruker DRX-500 spectrometers at 200, 300 or 500 MHz. 13C NMR spectra were recorded at 50, 75 or 125 MHz. Chemical shifts are given in ppm relative to Me₄Si (0 ppm, ¹H) or CDCl₃ (77.0 ppm, ¹³C). Mass spectra were recorded on a Finnigan MAT-TSQ 700 spectrometer. IR spectra were recorded on a BIO-RAD TFS 135 FT-IR spectrometer. All absorption values are expressed in wavenumbers $(cm⁻¹)$. Melting point were obtained on a Büchi Melting Point B-545 or a Microthermal 8103 apparatus and are uncorrected. HPLC were run on Waters apparatus including a Waters 600 Controller and a Waters 486 detector fitted with a $6 \mu m$ silica column. TLC were run on silicagel $60F_{254}$. Column chromatographies were performed on silicagel 40 $(230-400 \mu m,$ Merck). All solvents were distilled before use. $HN(SO_2CF_3)_2$ was graciously provided by Rhodia (Lyon, France) and was purified by distillation from 98% $H₂SO₄$. The various silanes were purchased from Aldrich and used without further purification. All reactions were run in flame dried glassware under strictly dry atmosphere of argon.

5.1. General procedure for the reaction of silanes with $HN(SO₂CF₃)₂$

In a one necked flask equipped with a condenser, the acid was introduced and covered with solvent. The silane was added at 0° C under stirring. Reaction was completed in the given conditions then the volatile compounds were evaporated under strictly dry vacuum. The residue was cannulated in a Kugelrohr distillation set and distillated under vacuum.

From allyltrimethylsilane. $HNTf_2$: 5 g (17.78 mmol, 1 equiv.), allyltrimethylsilane: 5.65 ml (4.06 g, allyltrimethylsilane: 35.56 mmol, 2 equiv.); No solvent, reaction at 20° C until end of gas evolution; yield: 5.7 g (16.13 mmol, 91%).

From vinyltrimethylsilane. $HNTf_2$: 1.15 g (4.09 mmol, 1 equiv.), vinyltrimethylsilane: 3.15 ml (2.05 g, 1 equiv.), vinyltrimethylsilane: 3.15 ml (2.05 g, 20.45 mmol, 5 equiv.); no solvent, reaction at reflux for 18 h; yield: 1.06 g (3.01 mmol, 74%).

From phenyltrimethylsilane. $HNTf_2$: 98 mg (348 μ mol, 1.2 equiv.), Me₃SiPh: 50 μ 1 (43 mg, 290 μ mol, 1 equiv.); CDCl₃: 0.6 ml, 1 h at 20 $^{\circ}$ C; yield: $>95\%$ (determined by NMR).

RN: 82113-66-4; colourless liquid; bp: 115° C (2 Torr); ¹H NMR (200 MHz): 0.58 (s, 3H); 19F NMR (282 MHz): -77.94 (s, CF₃); ¹³C NMR (50 MHz): 0.29 (Me), 118.72 (q, $J_{\text{C-F}}$ =320 Hz); ²⁹Si NMR (99 MHz): 54.3.

5.2. Complexation experiments

The experiments were performed under argon atmosphere in a 5 mm oven-dried NMR tube closed by a septum. The carbonyl compound (0.4 mmol) and 0.6 ml of CDCl₃ were syringed in and a ${}^{1}H$ spectrum was recorded at $0^{\circ}C$. The sample was cooled at -40° C and the Lewis or Brönsted acid were added to the mixture which was vortexed. The ¹H NMR spectra were recorded at 0° C.

5.3. General procedure for the catalyzed Diels–Alder reactions

A solution of the dienophile in toluene was placed in a two necked flask isolated from moisture with a silicagel trap. The solution was brought up to the selected temperature and 10 mol% of TMSNTf₂ followed by the diene were added to the solution of the dienophile. The reaction mixture was quenched by addition of 5 ml of a 1 M aqueous solution of $NaHCO₃$ and the resulting mixture was stirred for 1 h. The aqueous phase was extracted twice with 15 ml of $CH₂Cl₂$. The combined organic phases were dried over $MgSO₄$. Removal of the solvent in vacuo left a residue which was purified by flash chromatography on silica gel.

5.3.1. Cycloaddition of methylacrylate with cyclopentadiene. Methylacrylate $(200 \mu l, 191 \text{ mg}, 2.22 \text{ mmol},$ 1 equiv.), cyclopentadiene $(366 \mu l, 293 \text{ mg}, 4.44 \text{ mmol},$ 2 equiv.), TMSNT f_2 (78 mg, 222 μ mol, 0.1 equiv.), toluene (3 ml) ; 0°C , 20 min ; cyclohexane/AcOEt 95:5; yield: 0.282 g (1.85 mmol, 83%); endo/exo: 96:4.

endo Cycloadduct; RN: 2903-75-5; ¹H NMR (CDCl₃, 300 MHz): 1.27 (1H, d, $J=8.0$ Hz), 1.36–1.45 (2H, m), 1.84–1.97 (1H, m), 2.85–2.99 (2H, m), 3.19 (1H, s large), 3.54 (3H, s), 5.93 (1H, dd, $J=5.6$, 2.9 Hz), 6.19 (1H, dd, $J=5.6, 3.0 \text{ Hz}$); ¹³C NMR (CDCl₃, 50 MHz): 29.33, 42.56, 43.23, 45.68, 49.61, 51.29, 132.41, 137.65, 175.09.

5.3.2. Cycloaddition of methylcrotonate with cyclopentadiene. Methylcrotonate $(200 \mu l, 188 \text{ mg}, 1.88 \text{ mmol},$ 1 equiv.), cyclopentadiene $(466 \mu l, 373 \text{ mg}, 5.65 \text{ mmol},$ 3 equiv.), TMSNTf₂ (45 μ l, 66 mg, 188 μ mol, 0.1 equiv.), toluene (4 ml); rt, 15 min; petroleum ether/Et₂O 96:4; endo/exo: 92:8.

endo Cycloadduct; RN: 155325-46-5; ¹H NMR (CDCl₃, 500 MHz): 1.18 (3H, d, J=6.9 Hz), 1.43 (1H, dd, J=8.6, 1.9 Hz), 1.54 (1H, d, $J=8.6$ Hz), 1.82 (1H, ddq $J=4.4$, 6.9, 1.9 Hz), 2.37 (1H, dd, J=3.9, 4.4 Hz), 2.46 (1H, s large), 3.1 $(1H, s \text{ large}), 3.61 (3H, s), 5.98 (1H, dd, J=5.8, 3.2 Hz),$ 6.26 (1H, dd, J=5.8, 3.2 Hz); ¹³C NMR (CDCl₃, 125 MHz): 45.72, 52.24, 37.7, 48.65, 138.48, 133.12, 45.78, 20.74, 174.95, 51.19.

exo Cycloadduct; RN: 23217-30-3; ¹H NMR (CDCl₃, 500 MHz): 0.91 (3H, d, $J=6.9$ Hz), 1.44 (1H, dq, $J=8.6$, 1.7 Hz), 1.64 (1H, dd, $J=5.2$, 1.8 Hz), 1.67 (1H, d, J=8.6 Hz), 2.35 (1H, m), 2.7 (1H, s large), 2.94 (1H, s large), 3.69 (3H, s), 6.11 (1H, dd, $J=5.8$, 3.2 Hz), 6.2 (1H, dd, J=5.8, 3.2 Hz); ¹³C NMR (CDCl₃, 125 MHz): 47.19, 51.06, 38.94, 47.08, 135.14, 136.43, 47.97, 18.87, 176.52, 51.46.

5.3.3. Cycloaddition of methylmethacrylate with cyclo**pentadiene.** Methylmetacrylate $(200 \text{ µl}, 187 \text{ mg})$ 1.86 mmol, 1 equiv.), cyclopentadiene $(462 \mu l, 370 \text{ mg})$ 5.60 mmol, 3 equiv.), TMSNTf₂ (45 μ l, 66 mg, 186 μ mol, 0.1 equiv.), toluene (4 ml); rt, 15 min; petroleum ether/ $Et₂O$ 96:4; endo/exo: 57:43; yield: 0.289 g (1.74 mmol, 93%).

endo Cycloadduct; RN: 7167-29-5; ¹H NMR (CDCl₃, 500 MHz): $1.35-1.45$ (2H, m), 1.49 (1H, d, J=8.6 Hz), 1.87 (3H, s), 1.87 (1H, dd, $J=11.9$, 2.6 Hz), 2.71 (1H, s large), 2.76 (1H, s large), 3.54 (3H, s), 5.95 (1H, dd, $J=5.6$, 2.9 Hz), 6.06 (1H, dd, J=5.6, 3.2 Hz); ¹³C NMR (CDCl₃, 125 MHz): 50.77, 49.72, 37.75, 42.35, 137.42, 135.05, 46.55, 26.11, 177.47, 51.07.

exo Cycloadduct; RN: 7167-28-4; ¹H NMR (CDCl₃, 500 MHz): 0.77 (1H, dd, $J=11.9$, 2.2 Hz), 1.02 (3H, s), 1.29 $(1H, d, J=8.6 Hz), 1.36 (1H, dd, J=8.6, 2.2 Hz), 2.36 (1H, dd,$ J=11.9, 3.9 Hz), 2.74 (1H, s large), 2.95 (1H, s large), 3.62 $(3H, s), 6.00$ (1H, dd, J=5.6, 3.1 Hz), 6.14 (1H, dd, J=5.6, 3.0 Hz); 13C NMR (CDCl3, 125 MHz): 50.22, 49.33, 37.48, 42.62, 138.38, 133.31, 48.82, 23.97, 178.84, 51.57.

5.3.4. Cycloaddition of methylacrylate with 1,3-cyclohexadiene. Methylacrylate $(200 \mu l, 191 \text{ mg}, 2.22 \text{ mmol},$ 1 equiv.), 1,3-cyclohexadiene (413 μ l, 355 mg, 4.44 mmol, 2 equiv.), TMSNT f_2 (78 mg, 222 μ mol, 0.1 equiv.), toluene (6 ml) ; 0°C , 60 min ; cyclohexane/AcOEt 95:5; yield: 0.338 g (2.03 mmol, 92%); endolexo: $>95:5$.

endo Cycloadduct; RN: 25578-17-0; ¹H NMR (CDCl₃, 500 MHz): 1.00–1.9 (6H, m), 2.34–3.00 (3H, m), 3.54 (3H, s), 5.59–6.40 (2H, m).

5.3.5. Cycloaddition of methylacrylate with 1-(tertbutyldimethylsilyloxy)cyclohexa-1,3-diene. Methylacrylate $(100 \mu l, 95 \text{ mg}, 1.11 \text{ mmol}, 1 \text{ equiv.}), 1-(tert-butyl$ dimethylsilyloxy)cyclohexa-1,3-diene (303 mg, 1.44 mmol, 1.3 equiv.), TMSNT f_2 (39 mg, 111 μ mol, 0.1 equiv.), toluene (3 ml); addition of reagents at 0° C then reaction at rt for 1 h; cyclohexane/AcOEt 96:4; yield: 0.257 g (0.23 mmol, 79%); endo/exo: 60:40.

endo Cycloadduct; ¹H NMR (CDCl₃, 500 MHz): 0.11 (6H, s), 0.87 (9H, s), 1.35–1.46 (2H, m), 1.5–1.51 (1H, m), $1.56-1.66$ (2H, m), 1.87 (1H, ddd, J=12.5, 9.9, 2.8 Hz), $2.5-2.6$ (1H, m), 2.74 (1H, dd, $J=9.9$, 5.9 Hz), 3.61 (3H, s), 6.16 (1H, d, J=8.6 Hz), 6.21 (1H, dd, J=8.6, 6.5 Hz); ¹³C NMR (CDCl₃, 50 MHz): 175.35, 136.35, 131.17, 76.40, 51.26, 49.93, 35.33, 33.22, 29.41, 25.78, 25.61, 17.98, $-2.24, -2.44$; IR (neat): 880, 1130, 1170, 1205, 1265, 1360, 1435, 1740, 2940, 2960; MS (EI, 70 eV): 73 (20%), 89 (14%), 151 (55%), 210 (46%), 239 (100%), 296 (5%); Elemental analysis calcd (%) for $C_{16}H_{28}O_3Si$: C 64.81, H 9.51; found: C 64.90, H 9.75.

exo Cycloadduct; ¹H NMR (CDCl₃, 200 MHz): 0.07 (3H, s), 0.12 (3H, s), 0.89 (9H, s), 1.2–1.8 (5H, m), 2.24 (1H, td, J=11.3, 3.5 Hz), 2.5–2.6 (2H, m), 3.66 (3H, s), 6.14 (1H, dd, $J=8.7$, 6.3 Hz), 6.26 (1H, d, $J=8.4$ Hz); ¹³C NMR (CDCl3, 50 MHz): 175.5, 139.31, 132.08, 77.19, 51.26, 49.11, 30.75, 29.52, 28.65, 26.13, 25.62, 18.4, 22.33, 22.56; IR (neat): 880, 1150, 1180, 1195, 1210, 1260, 1360,

1735, 2935s, 2955; MS (EI, 70 eV): 45 (59%), 55 (90%), 73 (100%), 75 (56%), 89 (30%), 151 (11%), 210 (5%), 239 (11%) , 296 (1%) ; Elemental analysis calcd $(\%)$ for $C_{16}H_{28}O_3Si$: C 64.81, H 9.51; found: C 64.91, H 9.53.

5.3.6. Cycloaddition of methylacrylate with 1,3-bis(tertbutyldimethylsiloxy)cyclohexa-1,3-diene. 1,3-Bis(tertbutyldimethylsiloxy)cyclohexa-1,3-diene (450 mg, 1.32 mmol, 1.23 equiv.), methylacrylate $(96 \mu l, 91 \text{ mg},$ 1.07 mmol, 1 equiv.), $TMSNTf_2$ (37 mg, 106 μ mol, 0.1 equiv.), toluene (3 ml); addition of reagents at 0° C then reaction at rt for 1 h; cyclohexane/AcOEt 9:1; yield: 0.255 g (0.82 mmol, 76.5%); endo/exo: 96:4.

endo Cycloadduct; ¹H NMR (CDCl₃, 200 MHz): 0.07 (3H, s), 0.11 (3H, s), 0.83 (9H, s), 1.74–1.87 (4H, m), 1.98–2.05 $(2H, m)$, $2.2 - 2.35$ (1H, m), 2.23 (1H, d, $J=19$ Hz), 2.9 (1H, dd, $J=9.2$, 7.9 Hz), 3.22 (1H, d, $J=18.6$ Hz), 3.67 (3H, s); ¹³C NMR (CDCl₃, 50 MHz): 211.75, 174.78, 74.31, 51.6, 47.76, 47.45, 41.35, 34.82, 27.43, 25.41, 22.25, 17.69, -2.21 ; IR (neat): 860, 1140, 1170, 1205, 1260, 1325, 1740, 2860, 2940, 2960; MS (EI, 70 eV, +Q1MS): 55 (43%), 75 (35%), 89 (30%), 195 (12%), 227 (26%), 255 (100%), 312 (1%); Elemental analysis calcd (%) for $C_{16}H_{28}O_4Si$: C 61.49, H 9.03; found: C 61.50, H 8.90.

exo Cycloadduct; ¹H NMR (CDCl₃, 200 MHz): 0.07 (3H, s), 0.11 (3H, s), 0.84 (9H, s), 1.57 (1H, tdd, $J=11.9$, 4.4, 2.1 Hz), 1.77 (1H, tm, $J=13.0$ Hz), 1.85–2.13 (3H, m), $2.27-2.54$ (4H, m), 2.77 (1H, ddd, $J=10.8$, 6.4, 2.0 Hz), 3.69 (3H, s); 13C NMR (CDCl3, 50 MHz): 212.02, 174.71, 74.16, 53.3, 51.29, 48.27, 41.46, 28.03, 26.63, 25.39, 22.27, 17.77, 22.25; IR (neat): 870, 1135, 1170, 1205, 1260, 1335, 1370, 1735, 2860, 2940, 2960; MS (EI, 70 eV): 55 (16%), 75 (100%), 89 (30%), 227 (6%), 255 (16%), 312 (1%); Elemental analysis calcd (%) for $C_{16}H_{28}O_4Si$: C 61.49, H 9.03; found: C 61.60, H 9.00.

5.3.7. Cycloaddition of methylacrylate with 1-phenyl-3- (trimethylsilyloxy)buta-1,3-diene. 1-Phenyl-3-(trimethylsilyloxy)buta-1,3-diene (315 mg, 1.44 mmol, 1.3 equiv.), methylacrylate $(100 \mu l, 95 mg, 1.11 mmol, 1 equiv.),$ TMSNTf₂ (39 mg, 111 μ mol, 0.1 equiv.), toluene (3 ml); addition of reagents at -50° C then reaction at rt for 1 h; cyclohexane/AcOEt 8:2; yield: 0.232 g (1 mmol, 91%); endo/exo: $>95:5$ (single isomer observed).

endo Cycloadduct; RN: 136145-71-6; ¹H NMR (CDCl₃, 300 MHz): 2.1 (1H, dddd, $J=14.1$, 4.9, 5.5, 5.9 Hz), 2.24 $(1H, dddd, J=14.1, 4.9, 5.5, 10.3 Hz), 2.4 (1H, ddd, J=15.5,$ 5.5, 5.5 Hz), 2.6 (1H, dd, $J=14.6$, 5.6 Hz), 2.8 (1H, ddd, $J=15.5, 5.9, 10.3 \text{ Hz}$), 3.12 (1H, q, $J=4.9 \text{ Hz}$), 3.27 (1H, dd, $J=14.6$, 10.4 Hz), 3.5 (1H, ddd, $J=5.6$, 10.4, 4.9 Hz), 3.55 $(3H, s), 7.1-7.35$ (5H, m); ¹³C NMR (CDCl₃, 50 MHz): 26.14, 38, 43.36, 44.53, 45.08, 51.21, 127.08, 127.29, 128.38, 140.73, 173.23, 210.08.

5.3.8. Cycloaddition of methylcrotonate with 1-phenyl-3- (trimethylsilyloxy)buta-1,3-diene. 1-Phenyl-3-(trimethylsilyloxy)buta-1,3-diene: (315 mg, 1.44 mmol, 1.3 equiv.), methylcrotonate $(117 \mu l, 111 \text{ mg}, 1.11 \text{ mmol}, 1 \text{equiv}.)$, TMSNTf₂ (39 mg, 111 μ mol, 0.1 equiv.), toluene (3 ml); addition of reagents at -50° C then reaction at rt for 1 h; cyclohexane/AcOEt 8:2; endo/exo: 9:1; yield: 0.215 g (0.87 mmol, 79%).

endo Cycloadduct; RN: 83194-78-9; ¹H NMR (CDCl₃, 500 MHz): 1.13 (3H, d, J=6.8 Hz), 2.17 (1H, dd, J=14.8, 6.8 Hz), 2.53 (1H, m, J=5.5, 6.8 Hz), 2.58 (1H, dd, J=14.6, 5.03 Hz), 2.85 (1H, t, $J=5.5$ Hz), 2.89 (1H, dd, $J=14.8$, 5.5 Hz), 3.2 (1H, dd, $J=14.6$, 9.86 Hz), 3.46 (3H, s), 3.61 (1H, ddd, J=5.03, 9.86, 5.5 Hz), 7.1–7.4 (5H, m); ¹³C NMR (CDCl3, 125 MHz): 210.45, 43.02, 41.24, 52, 31.16, 45.32, 173.25, 51.09, 140.4, 127.31, 128.24, 126.96, 20.43.

5.3.9. Cycloaddition of methylacrylate with 1-phenyl-3 trimethylsilyloxy-2-azapenta-1,3-diene. 1-Phenyl-3-trimethylsilyloxy-2-azapenta-1,3-diene (310 mg, 1.33 mmol, 1.2 equiv.), methylacrylate: $(100 \mu l, 95 \text{ mg}, 1.11 \text{ mmol},$ 1 equiv.), TMSNT f_2 (39 mg, 111 μ mol, 0.1 equiv.), toluene (3 ml); reaction at 0° C for 90 min; AcOEt/cyclohexane 75:25; yield: 0.205 g (0.83 mmol, 74%); endo/exo: 67:33.

endo Cycloadduct; ¹H NMR (CDCl₃, 200 MHz): 1.31 (3H, d, $J=6.9$ Hz), 1.76 (1H, q, $J=13$ Hz), 1.94 (1H, ddd, $J=14.0, 6.9, 3.7 \text{ Hz}$), 2.4 (1H, hept, $J=6.9, 12.3 \text{ Hz}$), 3.22 $(1H, ddd, J=4.6, 3.7, 12.8 Hz), 3.56 (3H, s), 5.01 (1H, t,$ J=4.6 Hz), 6.54 (1H, s large), 7.1–7.35 (5H, m); ¹³C NMR (CDCl3, 50 MHz): 16.91, 25.89, 35.28, 44.69, 51.57, 57.11, 128.24, 128.29, 127.21, 138.42, 171.04, 174.72; IR (neat): 801, 1261, 1662, 1741, 2950, 3033, 3209; MS (EI, 70 eV): 55.1 (41%), 77 (34%), 106.1 (95%), 133.1 (21%), 161.1 (100%), 177 (97%), 188.2 (20%), 232.1 (4%), 247 (64%); HRMS (EI, 70 eV) calcd (%) for $C_{16}H_{28}O_4Si$ 247.1208; found 247.1213.

exo Cycloadduct; ¹H NMR (CDCl₃, 200 MHz): 1.21 (3H, d, $J=7.2$ Hz), 1.72 (1H, ddd, $J=10.8$, 5.6, 3.8 Hz), 2–2.4 (2H, m), 2.81 (1H, ddd, J=7.4, 4, 1.6 Hz), 3.62 (3H, s), 4.85 (1H, dd, J=1.5, 7.4 Hz), 6.51 (1H, s large), 7.2–7.4 (5H, m); ¹³C NMR (CDCl3, 75 MHz): 17.81, 29.68, 33.42, 44.68, 52.04, 58.3, 126.56, 128.3, 128.82, 140.58, 172.79, 175.24; IR (neat): 1193, 1355, 1455, 1661, 1734, 2954, 3063, 3219; MS (EI, 70 eV): 119 (4%), 161.1 (22%), 177.1 (100%), 188.2 (18%), 232.6 (1%), 247.3 (10%); HRMS (EI, 70 eV) calcd (%) for $C_{16}H_{28}O_4Si$ 247.1208; found 247.1204.

5.3.10. Cycloaddition of dimethylfumarate with 1 phenyl-3-(trimethylsilyloxy)buta-1,3-diene. Dimethylfumarate (200 mg, 1.39 mmol, 1 equiv.); 1-phenyl-3-(trimethylsilyloxy)buta-1,3-diene (393 mg, 1.80 mmol, 1.3 equiv.), 2,6-bis(tert-butyl)-4-methylpyridine: (28 mg, 138 μ mol, 0.1 equiv.), TMSNTf₂ (33 μ l, 49 mg, 138 μ mol, 0.1 equiv.), toluene (4 ml); reaction at 0°C for 1 h; petroleum ether/AcOEt 75:25, HPLC separation of isomers: hexane/iPrOH $80:20$, 25° C, 0.3 ml/min; yield: 0.293 g (1.01 mmol, 73%); endo/exo: 72:28.

exo-trans Cycloadduct; mp: 107.5 \degree C; HPLC (6 μ m silica column, eluent: hexane (90%)/iPrOH, flow: 0.5 ml/min, λ =254 nm): 17.373 min;¹H NMR (C₆D₆, 500 MHz): 2.53 $(1H, dd, J=15.0, 13.8 Hz), 2.76 (1H, dd, J=15.0, 13.0 Hz),$ 2.8 (1H, ddd, $J=15.0$, 4.0, 1.8 Hz), 3.11 (1H, ddd, $J=15.0$, 4.4, 1.8 Hz), 3.33 (1H, ddd, $J=11.1$, 13.8, 4.0 Hz), 3.47 (1H, t, $J=11.1$ Hz), $3.5-3.55$ (1H, m), 3.54 (3H, s), $7.3-7.7$ (5H, m), 7.72 (3H, s); ¹³C NMR (C₆D₆, 125 MHz): 204.55, 42.53, 46.02, 51.77, 46.66, 47.83, 173.42, 173.13, 51.87, 52.38, 141.84, 127.15 (CDCl₃), 128.8 (CDCl₃), 127.63 (CDCl3); IR (neat): 702, 772, 1011, 1168, 1434, 1712, 1727, 2952, 3035; MS (EI, 70 eV): 59 (12%), 104.1 (14%), 129.1 (17%), 171.1 (100%), 230.1 (84%), 259.1 (28%), 290.2 (32%) ; HRMS (EI, 70 eV) calcd (%) for C₁₆H₁₈O₅ 290.1154; found 290.1160.

endo-trans Cycloadduct; mp: 90.5° C; HPLC (6 μ m silica column, eluent: hexane (90%)/iPrOH, flow: 0.5 ml/min, λ =254 nm): 19.26 min; ¹H NMR (CDCl₃, 500 MHz): 2.6 $(1H, dd, J=15.7, 9.3 Hz), 2.72 (1H, dd, J=15.7, 5.9 Hz), 2.9$ $(1H, dd, J=15.7, 5.3 Hz), 2.99 (1H, dd, J=15.7, 5.9 Hz),$ 3.24 (1H, ddd, $J=8.6$, 9.3, 5.3 Hz), 3.49 (1H, dd, $J=5.1$, 8.6 Hz), 3.54 (3H, s), 3.71 (3H, s), 3.79 (1H, q, $J=5.9$ Hz), 7.03–7.32 (5H, m); ¹³C NMR (CDCl₃, 125 MHz): 207.42, 43.57, 41.58, 47.33, 40.68, 40.82, 173.32, 172.03, 51.62, 52.31, 139.62, 127.44, 128.48, 127.38; IR (neat): 702, 908, 1018, 1164, 1276, 1435, 1738, 2953, 3003, 3030; HPLC-MS (APCI): 129.3 (16%), 143.2 (21%), 157.2 (24%), 171.2 (61%), 181.2 (35%), 199.1 (100%), 227.1 (22%), 231.1 (17%), 259.1 (45%), 290.9 (3%); HRMS (EI, 70 eV) calcd (%) for $C_{16}H_{18}O_5$ 290.1154; found 290.1169.

5.3.11. Cycloaddition of dimethylmaleate with 1-phenyl-3-(trimethylsilyloxy)buta-1,3-diene. Dimethylmaleate $(200 \mu l, 230 \text{ mg}, 1.60 \text{ mmol}, 1 \text{ equiv.}), 1-phenyl-3-(tri$ methylsilyloxy)buta-1,3-diene (453 mg, 2.08 mmol, 1.3 equiv.), 2,6-bis(tert-butyl)-4-methylpyridine (32 mg, 159 μ mol, 0.1 equiv.), TMSNTf₂ (38 μ l, 56 mg, 159 μ mol, 0.1 equiv.), TMSNTf₂ (38 μ l, 56 mg, 159 μ mol, 0.1 equiv.), toluene (4 ml); reaction at 0°C for 1 h; petroleum ether/AcOEt 75:25; yield: 0.390 g (1.34 mmol, 84%); endo-cis/exo-trans/endo-trans: 34:17:49 (determined by HPLC).

endo-cis Cycloadduct; mp: 84.5°C; HPLC (6 μ m silica column, eluent: hexane (90%)/iPrOH, flow: 0.5 ml/min, λ =254 nm): 16.27 min; ¹H NMR (CDCl₃, 500 MHz): 2.52 $(1H, dd, J=14.4, 4.6 Hz), 2.68 (1H, dd, J=14.4, 4.6 Hz),$ 3.13 (1H, dt, $J=13.7$, 4.6 Hz), 3.28 (1H, dd, $J=14.4$, 13.7 Hz), 3.32 (1H, dt, $J=13.7$, 4.6 Hz), 3.4 (1H, dd, $J=14.4$, 13.7 Hz), 3.41 (1H, t, $J=4.6$ Hz), 3.43 (3H, s), 3.7 $(3H, s)$, 7.1–7.4 (5H, m); ¹³C NMR (CDCl₃, 125 MHz): 208.17, 41.42, 44.01, 46.95, 44.46, 39.15, 171.78, 171.85, 51.29, 52.26, 139.79, 126.78, 128.53, 127.44; IR (neat): 700, 992, 1174, 1220, 1272, 1438, 1712, 1720, 1736, 2952, 3029, 3062; HPLC-MS (APCI): 129.3 (11%), 143.2 (22%), 157.2 (16%), 171.2 (56%), 181.3 (48%), 199.1 (100%), 227 (28%), 259.1 (20%); HRMS (EI, 70 eV) calcd (%) for $C_{16}H_{18}O_5$ 290.1154; found 290.1150.

Acknowledgements

Financial support was generously provided by the 'Ministere de l'Education et de la Recherche Scientifique de la Communauté française de Belgique' (action de recherche concertée 96/01-197), F.R.I.A., the University of Louvain (fellowships to B. M.) and Rhodia. We thank Dr R. Touillaux for NMR analyses and Pr E. de Hoffman for the mass spectra.

References

- 1. Reviews: (a) Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1984, 23, 876. (b) Paquette, L. A. Assymetric Synthesis; Morisson, J. P., Ed.; Academic: New York, 1984; Vol. 3. (c) Kagan, H. B.; Riant, O. Chem. Rev. 1992, 92, 1007. (d) Pindur, U.; Lutz, G.; Otto, C. Chem. Rev 1993, 93, 741. (e) Ghosez, L. In Stereocontrolled Organic Synthesis; Trost, B., Ed.; Blackwell Scientific Publication: Oxford, 1994; p 193. (f) Yamamoto, H.; Maruoka, K.; Ishihara, K.; Yanagisawa, A.; Oguni, N.; Mikami, K.; Terada, M.; Kobayashi, S.; Hosomi, A.; Miura, K.; Sawamura, M.; Suzuki, K.; Fukuzawa, S.; Nakai, T.; Tomooka, K.; Nishiyama, H.; Motoyama, Y.; Aida, T.; Takeuchi, D. Lewis Acid Reagents, A Practical Approach; Oxford University: Oxford, 1999.
- 2. Mbiya, K. PhD Dissertation, University of Louvain, 1994.
- 3. (a) Lamy-Schelkens, H.; Giomi, D.; Ghosez, L. Tetrahedron Lett. 1989, 30, 5887–5890. (b) Lamy-Schelkens, H.; Ghosez, L. Tetrahedron Lett. 1989, 30, 5891–5894.
- 4. (a) Lambert, J.; Zhao, Y.; Zhang, S. J. Phys. Org. Chem. 2001, 14, 370–379. (b) Lambert, J.; Kania, L.; Zhang, S. Chem. Rev. 1995, 95, 1191–1201. (c) Olsson, L.; Ottosson, C.-H.; Cremer, D. J. Am. Chem. Soc. 1995, 117, 7460-7479.
- 5. Ivanov, S. V.; Rockwell, J. J.; Polyakov, O. G.; Gaudinski, C. M.; Anderson, O. P.; Solntsev, K. A.; Strauss, S. H. J. Am. Chem. Soc. 1998, 120, 4224–4225.
- 6. Lambert, J. B.; Zhang, S.; Ciro, S. M. Organometallics 1994, 13, 2430–2443.
- 7. Vij, A.; Zheng, Y. Y.; Kirchmeier, R. L.; Shreeve, J. M. Inorg. Chem. 1994, 33, 3281–3288.
- 8. Trehan, A.; Vij, A.; Walia, M.; Kaur, G.; Verma, R. D.; Trehan, S. Tetrahedron Lett. 1993, 34, 7335–7338.
- 9. Olah, G. A.; Laali, K.; Farooq, O. Organometallics 1984, 3, 1337–1340.
- 10. Marsmann, H. C.; Horn, H. G. Z. Naturforsch. 1972, 27b, 1448–1451.
- 11. (a) Handy, S. T.; Grieco, P. A.; Mineur, C.; Ghosez, L. Synlett

1995, 565–567. (b) Tamion, R.; Mineur, C.; Ghosez, L. Tetrahedron Lett. 1995, 36, 8977–8980.

- 12. (a) Mathieu, B.; Ghosez, L. Tetrahedron Lett. 1997, 38, 5497–5500. (b) Mathieu, B.; Desmurs, J. R.; Ghosez, L. French Patent 99 05195, 1999, World Patent 0064908 2000.
- 13. Ishii, A.; Kotera, O.; Saeki, T.; Mikami, K. Synlett 1997, 10, 1145–1146.
- 14. (a) Kuhnert, N.; Peverley, J.; Robertson, J. Tetrahedron Lett. 1998, 39, 3215–3216. For the silylation of functional groups, see also: (b) Simchen, G.; Jonas, S. J. Prakt. Chem. Chem. Ztg. 1998, 340, 506–512.
- 15. Mathieu, B.; de Fays, L.; Ghosez, L. Tetrahedron Lett. 2000, 41, 9561–9564.
- 16. Ishihara, K.; Hiraiwa, Y.; Yamamoto, H. Synlett 2001, 12, 1851–1854.
- 17. Foropoulos, J.; DesMarteau, D. D. J. Am. Chem. Soc. 1982, 104, 4260–4261.
- 18. (TMSCl+HOTf) see Ref. 9 (Me₄Si+HOTf) Demuth, M.; Mikhail, G. Tetrahedron 1983, 39, 991–997.
- 19. (a) Hagen, G.; Mayr, H. J. Am. Chem. Soc. 1991, 113, 4954–4961. (b) Bassindale, A. R.; Taylor, P. G. In The Chemistry of Organic Silicon Compounds—Chapter 14: Activating and Directive Effects of Silicon; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989; p 893.
- 20. Foropoulos, J.; DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720–3723.
- 21. Michot, C. (Rhodia-Lyon) Unpublished results. Donnor numbers measured from dissociation of [Cu(acac)(tmen)X] $(X=OTf, NTf₂)$ in 1,2-dichloroethane.
- 22. Childs, R. F.; Mulholland, D. L.; Nixon, A. Can. J. Chem. 1982, 60, 801–808.
- 23. Laszlo, P.; Teston, M. J. Am. Chem. Soc. 1990, 112, 8750–8754.
- 24. A similar study was realized with trityl perchlorate, see: Kobayashi, S.; Sagawa, Y.; Akamatsu, H.; Mukaiyama, T. Chem. Lett. 1988, 1777–1780.